Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli.

نویسندگان

  • Juan J Martinez
  • Scott J Hultgren
چکیده

Bladder infections caused by uropathogenic Escherichia coli (UPEC) depends on the ability of E. coli to express type 1 pili. The adhesive component of the pilus, FimH, mediates the invasion of E. coli into the bladder epithelium, a mechanism that facilitates the survival and persistence of E. coli in the bladder. The invasion mechanism requires actin polymerization, focal adhesion kinase phosphorylation and PI 3-kinase activation as well as the formation of FAK/PI 3-kinase and downstream vinculin/alpha-actinin complexes. In this study, we report a role for Rho-GTPase family members, namely RhoA, Cdc42 and Rac1, in the invasion process. Internalization of type 1-piliated E. coli (fimH+) and FimH-coated micro-spheres was inhibited by compactin, a pan-Rho-GTPase inhibitor and dominant negative isoforms of Rac1 and Cdc42. Expression of active Rac1 induced an internalization of E. coli that was insensitive to wortmannin and genistein. Expression of constitutively active Cdc42 induced the formation of FAK/PI 3-kinase and vinculin/alpha-actinin complexes whereas active Rac1 induced only a vinculin/alpha-actinin complex. Taken together, these data suggest that FimH-mediated invasion is dependent on GTP-binding protein activity that involves Cdc42 and PI 3-kinase activation probably upstream of Rac1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrin-Mediated Host Cell Invasion by Type 1–Piliated Uropathogenic Escherichia coli

Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into...

متن کامل

CNF1 Exploits the Ubiquitin-Proteasome Machinery to Restrict Rho GTPase Activation for Bacterial Host Cell Invasion

CNF1 toxin is a virulence factor produced by uropathogenic Escherichia coli. Upon cell binding and introduction into the cytosol, CNF1 deamidates glutamine 63 of RhoA (or 61 of Rac and Cdc42), rendering constitutively active these GTPases. Unexpectedly, we measured in bladder cells a transient CNF1-induced activation of Rho GTPases, maximal for Rac. Deactivation of Rac correlated with the incre...

متن کامل

Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses.

Strains of uropathogenic Escherichia coli (UPEC) are the causative agents in the vast majority of all urinary tract infections. Upon entering the urinary tract, UPEC strains face a formidable array of host defenses, including the flow of urine and a panoply of antimicrobial factors. To gain an initial foothold within the bladder, most UPEC strains encode filamentous surface adhesive organelles ...

متن کامل

The Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties.

Cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli belongs to a family of factors activating Rho GTPases. We report the in vivo effects of CNF1 in mice co-fed toxin and the soluble protein antigen ovalbumin (OVA). Similar to cholera toxin, CNF1 elicits adjuvanticity anti-OVA responses, both systemic and mucosal. In contrast, the catalytic inactive mutant CNF1-C866S demons...

متن کامل

LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis.

Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular microbiology

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2002